libsvm java版使用例 ================== 1.libsvm程式下載點: http://www.csie.ntu.edu.tw/~cjlin/libsvm+zip 2.範例資料下載點: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets 3.程式編譯法: C:\libsvm\libsvm-2.89\java>javac -cp libsvm.jar *.java 產生尺度調整器svm_scale.class 訓練器svm_train.class 預測器svm_predict.class 4.資料採稀疏格式,一列一案例,先預測數值,再列舉所有非零(維度:值) 5.訓練測試範例 以下範例訓練集資料: a1a.txt 以下範例測試集資料: a1a_t.txt A.未作尺度調整例: A1.呼叫訓練器 輸入訓練資料: a1a.txt 輸出學得模型: a1a_model.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_train a1a.txt a1a_model.txt * optimization finished, #iter = 495 nu = 0.46026768501985826 obj = -673.0313934890871, rho = -0.6285688589260043 nSV = 754, nBSV = 722 Total nSV = 754 A2.呼叫預測器 輸入測試資料: a1a_t.txt 輸入學得模型: a1a_model.txt 輸出預測結果: a1a_predict.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_predict a1a_t.txt a1a_model.txt a1a_predict.txt Accuracy = 83.58638066933712% (25875/30956) (classification) -- B.作尺度調整例: B1.呼叫尺度調整器2次 輸入訓練資料: a1a.txt 輸出調整模型: a1a_param.txt 輸出調整訓練資料: a1a_scale.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_scale -s a1a_param.txt a1a.txt > a1a_scale.txt Warning: original #nonzeros 22249 new #nonzeros 181365 Use -l 0 if many original feature values are zeros 輸入測試資料: a1a_t.txt 輸入調整模型: a1a_param.txt 輸出調整測試資料: a1a_t_scale.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_scale -r a1a_param.txt a1a_t.txt > a1a_t_scale.txt Warning: original #nonzeros 429343 new #nonzeros 3807588 Use -l 0 if many original feature values are zeros B2.呼叫訓練器 輸入訓練資料: a1a_scale.txt 輸出學得模型: a1a_model_scale.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_train a1a_scale.txt a1a_model_scale.txt * optimization finished, #iter = 682 nu = 0.4077289259698594 obj = -593.6459193183854, rho = -0.48104500731367267 nSV = 694, nBSV = 622 Total nSV = 694 B3.呼叫預測器 輸入測試資料: a1a_t_scale.txt 輸入學得模型: a1a_model_scale.txt 輸出預測結果: a1a_predict_scale.txt C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_predict a1a_t_scale .txt a1a_model_scale.txt a1a_predict_scale.txt Accuracy = 84.05478744023776% (26020/30956) (classification) -- -- 以上B相對於A,多作了輸出入範圍尺度調整,準確率略提昇. -- 另外,A1及B2呼叫訓練器時,針對預設C-SVC學習器, -- 若能適當作參數網格搜尋最佳化,準確率會更提昇 -- C-SVC參數有-g gamma及-c cost兩項,詳libsvm首頁guide.pdf -- http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf -- 1. 尺度調整器選項: C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_scale Usage: svm-scale [options] data_filename options: -l lower : x scaling lower limit (default -1) -u upper : x scaling upper limit (default +1) -y y_lower y_upper : y scaling limits (default: no y scaling) -s save_filename : save scaling parameters to save_filename -r restore_filename : restore scaling parameters from restore_filename 2. 訓練器選項: C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_train Usage: svm_train [options] training_set_file [model_file] options: -s svm_type : set type of SVM (default 0) 0 -- C-SVC 1 -- nu-SVC 2 -- one-class SVM 3 -- epsilon-SVR 4 -- nu-SVR -t kernel_type : set type of kernel function (default 2) 0 -- linear: u'*v 1 -- polynomial: (gamma*u'*v + coef0)^degree 2 -- radial basis function: exp(-gamma*|u-v|^2) 3 -- sigmoid: tanh(gamma*u'*v + coef0) 4 -- precomputed kernel (kernel values in training_set_file) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/k) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0) -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) -v n : n-fold cross validation mode -q : quiet mode (no outputs) 3. 預測器選項: C:\libsvm\libsvm-2.89\java>java -cp libsvm.jar svm_predict usage: svm_predict [options] test_file model_file output_file options: -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet
2009年10月29日 星期四
simple notes on libsvm java
訂閱:
文章 (Atom)