weka.classifiers.functions.Logistic 為羅吉斯迴歸學習器,
建立多類別羅吉斯迴歸模型,含嶺迴歸估計量(ridge estimator)參數,可用來預測類別值。
缺值由ReplaceMissingValuesFilter過濾器補值,文字屬性由NominalToBinaryFilter過濾器轉為數字。
參數說明:
-R <ridge> 設定log相似度的嶺迴歸估計量。預設值1e-8
-M <number> 設定最大迭代次數。預設值 -1 表示直到收斂為止
> java weka.classifiers.functions.Logistic -t data\weather.numeric.arff
Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
Class
Variable yes
===============================
outlook=sunny -6.4257
outlook=overcast 13.5922
outlook=rainy -5.6562
temperature -0.0776
humidity -0.1556
windy 3.7317
Intercept 22.234
Odds Ratios...
Class
Variable yes
===============================
outlook=sunny 0.0016
outlook=overcast 799848.4279
outlook=rainy 0.0035
temperature 0.9254
humidity 0.8559
windy 41.7508
Time taken to build model: 0 seconds
Time taken to test model on training data: 0 seconds
=== Error on training data ===
Correctly Classified Instances 11 78.5714 %
Incorrectly Classified Instances 3 21.4286 %
Kappa statistic 0.5532
Mean absolute error 0.2066
Root mean squared error 0.3273
Relative absolute error 44.4963 %
Root relative squared error 68.2597 %
Total Number of Instances 14
=== Confusion Matrix ===
a b <-- classified as
7 2 | a = yes
1 4 | b = no
=== Stratified cross-validation ===
Correctly Classified Instances 8 57.1429 %
Incorrectly Classified Instances 6 42.8571 %
Kappa statistic 0.0667
Mean absolute error 0.4548
Root mean squared error 0.6576
Relative absolute error 95.5132 %
Root relative squared error 133.2951 %
Total Number of Instances 14
=== Confusion Matrix ===
a b <-- classified as
6 3 | a = yes
3 2 | b = no
如下 weather.numeric.arff 案例集的14個案例利用2個文字屬性及2個數字屬性,預測文字屬性。
outlook | temperature | humidity | windy | play |
sunny | 85 | 85 | FALSE | no |
sunny | 80 | 90 | TRUE | no |
rainy | 65 | 70 | TRUE | no |
sunny | 72 | 95 | FALSE | no |
rainy | 71 | 91 | TRUE | no |
overcast | 83 | 86 | FALSE | yes |
rainy | 70 | 96 | FALSE | yes |
rainy | 68 | 80 | FALSE | yes |
overcast | 64 | 65 | TRUE | yes |
sunny | 69 | 70 | FALSE | yes |
rainy | 75 | 80 | FALSE | yes |
sunny | 75 | 70 | TRUE | yes |
overcast | 72 | 90 | TRUE | yes |
overcast | 81 | 75 | FALSE | yes |
參考:
1.weka.classifiers.functions.Logistic
code |
doc
沒有留言:
張貼留言