weka.classifiers.functions.Winnow 屬錯誤驅動型學習器, 只處理文字屬性,將之轉成二元屬性,用來預測二元類別值。可線上累進學習。 適用在案例集屬性眾多,卻多數和預測不相關情況,可以快速鎖定相關屬性作預測。 給定案例屬性(a0, a1, ..., ak),門檻 theta,權重升級係數alpha,權重降級係數beta, 權重向量(w0, w1, ..., wk)或(w0+ - w0-, w1+ - w1-, ..., wk+ - wk-) 其中,所有符號皆為正數,擴充屬性 a0 恆為 1。則預測式有二: 不平衡版: 權重向量各維度只能正數 w0 * a0 + w1 * a1 + ... + wk * ak > theta 表類別1; 否則類別2 平衡版: 權重向量各維度允許負數 (w0+ - w0-) * a0 + (w1+ - w1-) * a1 + ... + (wk+ - wk-) * ak > theta 表類別1; 否則類別2 學習過程若遇預測錯誤,則權重向量調整法如下: 類別2誤為類別1: w *= beta 或 w+ *= beta and w- *= alpha 讓權重變小 類別1誤為類別2: w *= alpha 或 w+ *= alpha and w- *= beta 讓權重變大 參數說明: -L使用平衡版。預設值false -I 套用訓練集學習權重的輪數。預設值1 -A 權重升級係數alpha,需>1。預設值2.0 -B 權重降級係數beta,需<1。預設值0.5 -H 預測門檻theta。預設值-1,表示屬性個數 -W 權重初始值,需>0。預設值2.0 -S 亂數種子,影響訓練集的案例訓練順序。預設值1 > java weka.classifiers.functions.Winnow -t data\weather.nominal.arff Winnow Attribute weights w0 8.0 w1 1.0 w2 2.0 w3 4.0 w4 2.0 w5 2.0 w6 1.0 w7 1.0 Cumulated mistake count: 7 Time taken to build model: 0 seconds Time taken to test model on training data: 0 seconds === Error on training data === Correctly Classified Instances 10 71.4286 % Incorrectly Classified Instances 4 28.5714 % Kappa statistic 0.3778 Mean absolute error 0.2857 Root mean squared error 0.5345 Relative absolute error 61.5385 % Root relative squared error 111.4773 % Total Number of Instances 14 === Confusion Matrix === a b <-- classified as 7 2 | a = yes 2 3 | b = no === Stratified cross-validation === Correctly Classified Instances 7 50 % Incorrectly Classified Instances 7 50 % Kappa statistic -0.2564 Mean absolute error 0.5 Root mean squared error 0.7071 Relative absolute error 105 % Root relative squared error 143.3236 % Total Number of Instances 14 === Confusion Matrix === a b <-- classified as 7 2 | a = yes 5 0 | b = no 如下 weather.nominal.arff 案例集的14個案例利用4個文字屬性,預測文字屬性。 參考: 1.weka.classifiers.functions.Winnow code | doc
outlook temperature humidity windy play sunny hot high FALSE no sunny hot high TRUE no overcast hot high FALSE yes rainy mild high FALSE yes rainy cool normal FALSE yes rainy cool normal TRUE no overcast cool normal TRUE yes sunny mild high FALSE no sunny cool normal FALSE yes rainy mild normal FALSE yes sunny mild normal TRUE yes overcast mild high TRUE yes overcast hot normal FALSE yes rainy mild high TRUE no
weka.classifiers.functions.Winnow
訂閱:
張貼留言 (Atom)
Building a Lightweight Streamlit Client for Local Ollama LLM Interaction
Ollama 提供端點串接服務,可由程式管理及使用本地大語言模型(LLM, Large Language Model)。 以下程式碼展示如何以 Streamlit 套件,建立一個輕量級的網頁介面,供呼叫 本地端安裝的 Ollama 大語言模型。 Ollama 預設的服務...

沒有留言:
張貼留言