2019年5月28日 星期二

flask-based web interface deployment for pytorch chatbot

### folder structure and flask setup
> ls 
data/  pytorch_chatbot/  save/  templates/  web.py

> ls templates/
template.html

> conda install Flask

> python web.py
 * Serving Flask app "web" (lazy loading)
 * Environment: production
   WARNING: Do not use the development server in a production environment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

  1.  
  2. <html>
  3. <title>template.html</title>
  4. <body>
  5. <pre>
  6. Test page for pytorch chatbot on seq2seq dataset
  7. <form action='translate' method='post'>
  8. model: <input type='text' name='model' value='{{param["model"]}}' />
  9. epoch: <input type='text' name='epoch' value='{{param["epoch"]}}' />
  10. topn: <input type='text' name='topn' value='{{param["topn"]}}' />
  11. query: <input type='text' name='query' value='{{param["query"]}}'/>
  12. <input type='submit' value='translate' />
  13. </form>
  14. {{param['result']}}
  15. </pre>
  16. </body>
  17. </html>
  1.  
  2. ##########################
  3. # web.py
  4. # > python web.py
  5. #########################
  6. from flask import Flask, request, render_template
  7.  
  8. import torch
  9. import random
  10. import pytorch_chatbot.main as pcm
  11. import pytorch_chatbot.evaluate as pce
  12. from pytorch_chatbot.train import indexesFromSentence
  13. from pytorch_chatbot.load import loadPrepareData
  14. from pytorch_chatbot.model import nn, EncoderRNN, LuongAttnDecoderRNN
  15.  
  16. import subprocess
  17. import json
  18.  
  19. def predictLoad(corpus, modelFile, n_layers=1, hidden_size=512):
  20. print('corpus={}\nmodelFile={}'.format(corpus,modelFile))
  21.  
  22. torch.set_grad_enabled(False)
  23. voc, pairs = loadPrepareData(corpus)
  24. embedding = nn.Embedding(voc.n_words, hidden_size)
  25. encoder = EncoderRNN(voc.n_words, hidden_size, embedding, n_layers)
  26. attn_model = 'dot'
  27. decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.n_words, n_layers)
  28.  
  29. checkpoint = torch.load(modelFile)
  30. encoder.load_state_dict(checkpoint['en'])
  31. decoder.load_state_dict(checkpoint['de'])
  32.  
  33. # train mode set to false, effect only on dropout, batchNorm
  34. encoder.train(False)
  35. decoder.train(False)
  36.  
  37. #try:
  38. encoder = encoder.to(device)
  39. decoder = decoder.to(device)
  40. #except:
  41. # print('cannot get encoder/decoder')
  42. return encoder, decoder, voc
  43.  
  44. def predict(encoder, decoder, voc, question, top):
  45. result_list = []
  46.  
  47. if(top==1):
  48. beam_size = 1
  49. output_words, _ = pce.evaluate(encoder, decoder, voc, question, beam_size)
  50. answer = ' '.join(output_words)
  51. answer = answer.replace('<EOS>','')
  52. result_list.append(answer)
  53. #print(output_words)
  54. else:
  55. beam_size = top
  56. output_words_list = pce.evaluate(encoder, decoder, voc, question, beam_size)
  57. count = 0;
  58. for output_words, score in output_words_list:
  59. count = count + 1
  60. if(count <= top):
  61. output_sentence = ' '.join(output_words)
  62. output_sentence = output_sentence.replace('<EOS>','')
  63. result_list.append(output_sentence)
  64. #print(" {:.3f} < {}".format(score, output_sentence))
  65. return result_list
  66.  
  67. def filter(voc, question):
  68. words = question.split()
  69. result = []
  70. for w in words:
  71. if(w in voc.word2index):
  72. result.append(w)
  73. return ' '.join(result)
  74.  
  75. # -------------------------------
  76. def sentence_test(voc,en,de,top,sentence):
  77. source = sentence.rstrip()
  78. seg_source = source
  79. fil_source = filter(voc, seg_source)
  80. target = predict(en, de, voc, fil_source, top)
  81. result = "\nsource: '%s'\nfilter: '%s'\n" % (seg_source,fil_source)
  82. for answer in target:
  83. result = result + "\t'%s'\n" % (answer)
  84. result = result + '\n'
  85. return result
  86.  
  87. def sentence_test_model(seg_corpus_name, iteration, top, sentence):
  88. n_layers = 1
  89. hidden_size = 512
  90.  
  91. modelFile = home_path + 'save/model/' + seg_corpus_name + '/1-1_512/' + str(iteration) + '_backup_bidir_model.tar'
  92.  
  93. en, de, voc = predictLoad(seg_corpus_name, modelFile, n_layers, hidden_size)
  94.  
  95. return sentence_test(voc,en,de,top,sentence)
  96.  
  97. def file_test(voc,en,de,top,test_file_name):
  98. with open(test_file_name,"r") as f:
  99. jp_data = f.readlines()
  100.  
  101. for i,source in enumerate(jp_data):
  102. source = source.rstrip()
  103. seg_source = source
  104. fil_source = filter(voc, seg_source)
  105. target = predict(en, de, voc, fil_source, top)
  106. print("%d:\nsource: '%s'\nfilter: '%s'" % (i+1,seg_source,fil_source))
  107. for answer in target:
  108. print("\t'%s'" % (answer))
  109.  
  110. def file_test_model(seg_corpus_name, iteration, top, test_file_name):
  111. n_layers = 1
  112. hidden_size = 512
  113.  
  114. modelFile = home_path + 'save/model/' + seg_corpus_name + '/1-1_512/' + str(iteration) + '_backup_bidir_model.tar'
  115.  
  116. en, de, voc = predictLoad(seg_corpus_name, modelFile, n_layers, hidden_size)
  117.  
  118. file_test(voc,en,de,top,test_file_name)
  119. def print_voc(voc):
  120. print('tw+jp voc size=%d' % (len(voc.word2index)))
  121. print(voc.index2word)
  122.  
  123. def list_models(seg_corpus_name=''):
  124. if seg_corpus_name=='':
  125. modelPath = home_path + 'save/model/'
  126. else:
  127. modelPath = home_path + 'save/model/' + seg_corpus_name + '/1-1_512'
  128.  
  129. out_bytes = subprocess.check_output(['ls','-l',modelPath],
  130. stderr=subprocess.STDOUT)
  131. out_text = out_bytes.decode('utf-8')
  132. return out_text
  133.  
  134. def load_source(seg_corpus_name):
  135. path = home_path + 'data/' + seg_corpus_name + '.txt'
  136. with open(path) as inp:
  137. data = inp.readlines()
  138.  
  139. print(len(data), len(data[0::2]), len(data[1::2]))
  140.  
  141. data = { 'source': data[0::2], 'target': data[1::2] }
  142. return data
  143.  
  144. # --------------------------
  145. app = Flask(__name__)
  146.  
  147. param0 = { 'model': 'translation2019_train_83k',
  148. 'epoch': 6000,
  149. 'topn' : 10,
  150. 'query' : 'what time is it?',
  151. 'result' : 'result area'
  152. }
  153.  
  154. @app.route('/')
  155. def forms():
  156. return render_template('translate.html', param=param0)
  157.  
  158. @app.route('/translate/<model>/<int:epoch>/<int:topn>', methods=['GET', 'POST'])
  159. def translate_long(model,epoch,topn):
  160. if request.method == 'POST':
  161. query = request.values['query']
  162. elif request.method == 'GET':
  163. query = request.args.get('query')
  164.  
  165. return translate(model,epoch,topn,query)
  166.  
  167.  
  168. @app.route('/translate', methods=['GET', 'POST'])
  169. def translate_short():
  170. if request.method == 'POST':
  171. query = request.values['query']
  172. model = request.values['model']
  173. epoch = request.values['epoch']
  174. topn = request.values['topn']
  175. elif request.method == 'GET':
  176. query = request.args.get('query')
  177. model = request.args.get('model')
  178. epoch = request.args.get('epoch')
  179. topn = request.args.get('topn')
  180.  
  181. return translate(model,epoch,topn,query)
  182.  
  183. def translate(model,epoch,topn,query):
  184. epoch = int(epoch)
  185. topn = int(topn)
  186.  
  187. try:
  188. target = sentence_test_model(model,epoch,topn,query)
  189. except:
  190. target = 'internal error, retry a again'
  191.  
  192. result = 'query="{}"\nresult="{}"\n'.format(query,target)
  193. param2 = { 'model': model,
  194. 'epoch': epoch,
  195. 'topn' : topn,
  196. 'query' : query,
  197. 'result' : result
  198. }
  199. return render_template('translate.html', param=param2)
  200.  
  201. @app.route('/list/<model>')
  202. def list_model(model):
  203. mlist = list_models(model)
  204. return '<pre>{}</pre>'.format(mlist)
  205.  
  206. @app.route('/list/')
  207. def list():
  208. mlist = list_models()
  209. return '<pre>{}</pre>'.format(mlist)
  210.  
  211. #######################################
  212.  
  213. USE_CUDA = torch.cuda.is_available()
  214. device = torch.device("cuda" if USE_CUDA else "cpu")
  215. home_path = './'
  216.  
  217. if __name__ == '__main__':
  218. app.run(host='0.0.0.0',port=8080)
註: 本程式使用 GitHub JavaScript code prettifier 工具標示顏色。其方法如下: 1.參考 [Blogger] 如何在 Blogger 顯示程式碼 - Google Code Prettify 於【Blogger 版面配置 HTML/JavaScript小工具】安裝如下套件 <script src="https://cdn.jsdelivr.net/gh/google/code-prettify@master/loader/run_prettify.js"></script> 2.文章編輯再以HTML模式為程式包上如下標籤。 <code class="prettyprint lang-html linenums"> ... </code> <code class="prettyprint lang-python linenums"> ... </code>

沒有留言: