weka.classifiers.rules.ZeroR屬背景值(零規則)學習器,利用多數/平均決原理,提供案例集背景表現值供標竿比較之用。
任何學習器都應該比ZeroR表現(背景值)更好才有存在價值。
ZeroR學習分類時只記錄看過案例中多數類別為何。學習迴歸時只記錄看過案例的平均值為何。
預測時則完全不看案例屬性,任何案例的分類皆預測為記錄的多數類別,任何迴歸皆預測為記錄的平均值。
> java -cp weka.jar;. weka.classifiers.rules.ZeroR  -t data\weather.numeric.arff
ZeroR predicts class value: yes
Time taken to build model: 0 seconds
Time taken to test model on training data: 0 seconds
=== Error on training data ===
Correctly Classified Instances           9               64.2857 %
Incorrectly Classified Instances         5               35.7143 %
Kappa statistic                          0
Mean absolute error                      0.4643
Root mean squared error                  0.4795
Relative absolute error                100      %
Root relative squared error            100      %
Total Number of Instances               14
=== Confusion Matrix ===
 a b   <-- classified as
 9 0 | a = yes
 5 0 | b = no
=== Stratified cross-validation ===
Correctly Classified Instances           9               64.2857 %
Incorrectly Classified Instances         5               35.7143 %
Kappa statistic                          0
Mean absolute error                      0.4762
Root mean squared error                  0.4934
Relative absolute error                100      %
Root relative squared error            100      %
Total Number of Instances               14
=== Confusion Matrix ===
 a b   <-- classified as
 9 0 | a = yes
 5 0 | b = no
如下 weather.numeric.arff 案例集的14個案例有9個yes,5個no。
 
 
 
 
 
 
  | outlook | temperature | humidity | windy | play | 
  | sunny | 85 | 85 | FALSE | no | 
  | sunny | 80 | 90 | TRUE | no | 
  | rainy | 65 | 70 | TRUE | no | 
  | sunny | 72 | 95 | FALSE | no | 
  | rainy | 71 | 91 | TRUE | no | 
  | overcast | 83 | 86 | FALSE | yes | 
  | rainy | 70 | 96 | FALSE | yes | 
  | rainy | 68 | 80 | FALSE | yes | 
  | overcast | 64 | 65 | TRUE | yes | 
  | sunny | 69 | 70 | FALSE | yes | 
  | rainy | 75 | 80 | FALSE | yes | 
  | sunny | 75 | 70 | TRUE | yes | 
  | overcast | 72 | 90 | TRUE | yes | 
  | overcast | 81 | 75 | FALSE | yes | 
參考: weka.classifiers.rules.ZeorR
1. 
source code
2. 
documentation
 
沒有留言:
張貼留言